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SUMMARY

Steady flows in a three-dimensional lid-driven cavity at moderate Reynolds number are studied using various
methods of parallel programming on the Cray T3D and Thinking Machines CM-5. These three-dimensional
flows are compared with flows computed in a two-dimensional cavity. Solutions at Reynolds number up to 500
agree well with the experimental data of Aidahal. (Phys. Fluids A3, 2081-2091 (1991)) for the location of
separation of the secondary eddy at the downstream wall. Convergence of the three-dimensional problem using
GMRES with diagonal preconditioning could not be obtained at Reynolds number greater than about 500. We
speculate that the source of the difficulty is the loss of stability via pitchfork and Hopf bifurcations identified by
Aidun et al. The relative performance of various methods of message passing on the Cray T3D is compared with
the data-parallel mode of programming on the CM-5. No clear advantage between machines or message-passing
methods is distinguished()1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Massively parallel computing platforms and algorithms hold great promise for analysing a spectrum
of issues involving fluid mechanics and transport phenomena in systems where three-dimensional and
time-dependent behaviours predominate. Such behaviour is characteristic of many materials-
processing systems, such as those employed to produce large, single crystals for photonic and
electronic deviced™® It is the study of these systems that drives our development of parallel
algorithms?®

In this paper we aim to compare the relative performance of the Thinking Machines Corporation
Connection Machine 5 (CM-5) and the Cray T3D. Both are massively parallel, distributed memory
supercomputers. For this comparison we choose to compute a classical problem, a three-dimensional
lid-driven cavity flow, which is representative of the non-linear flows found in many materials-
processing systems of interest to us. While two-dimensional lid-driven flow has been extensively
analysed using a wide variety of techniques (see e.g. References 9-17), relatively few three-
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dimensond analses have been performed:®2* This problem choice is also promped by
expeimentalobservabns of interestingthreedimensonal flow strucuresin this simple system??24

While the numerical analyss of two-dimensional and axisymmetric flow is routine today,
undestandirg three-dimeni®nd, time-dendentjncompiessiblefluid flows remainsa dauntng task
via numeical analsis. A simple illustrative calculation bearsout someof the challengesassocited
with three-dimen®nal computations.Considerthe numeical calculationof a steadyflow field overa
two-dimensiamal doman with N grid pointsalongeachedge We will alsoconsiderthattherearefive
degrees of freedomat eachgrid point to representthree componentsof the velocity field, the fluid
presurefield andthe tempeaturefield. Obvioudy thereare5N® mathenatical degreesof freedomin
this representatio. Sincethis is a non-linearproblem Newtoniterationis commony appled to the
disaete equatioms that arise after application of some numerical apprximation of the origina
equaions. The Jacolian matrix thatarisesfrom this techniqieis unsymnetric andindefinite owing to
the underlying natue of the incompresghle Navier—Stkes equaions. As such, direct solution
methods have been gainfully applied to the resuting linear algebrac problem® A simple
bookkeepingschemeresultsin a sparse strucured Jacobianmatrix which hasa half-bandwdth of
order 5N. The memoy requrementsof this apprach (storing the entire Jacobianmatrix) scaleas
25N3, and the computaional effort expendecusing a direct solution technique, which scalesasthe
size of the sysem times the half-bandwidth squared is appraimately 125N* floating point
operdions.

Applying theidertical approactto a three-dimen®nal problemyields strikingly differentresults.
Corsider now a threedimensonal cube with N grid points per edge, yielding a total of 5N3
mathenatical unknowns. The resultingJacolian matrix of this systemhasa bandwdth of order5N.
The memoy requirementsof this approach(againstoringthe entire Jacobiarmatrix) scaleas 25N>,
andthe computatonal effort expened usinga direct solutiontechnigqie scalesas 125N’ operations.

The implications of the different scalirgs of the above approachare madeclear by the results
computedin Tablel, whereseveralsystemsizesareconstered.Note thattwo-dimensionalproblems
with N =50-200arefeasiblefor a large vector conmputerof today, suchasthe Cray C90. However,
both memoy and executioneffort are prohibitively large evenin the N=50 three-dimen&nd

Tablel. Simplescalingof computationdor problemdiscussedn text

N =50 N =100 N =200
Total numberof unknows
Two-dimensionabproblem 125 x10* 5 x10* 2 X10°
Three-dimensionaproblem 6-25 X10° 5 x10° 4 x10
Memory required
Two-dimensionaproblem 25 Mb 200 Mb 16 X10° Mb
Three-dimensionaproblem 625 Gb 2 X10® Gb 6-4 X10" Gb
Operationgrequiredper iteration
Two-dimensionajproblem 7-81 x1CP 125 x10%° 2 x10't
Three-dimensionaproblem 9-77 X10™ 125 X10' 16 X108
Time requiredper iteratior?
Two-dimensionaproblem 156s 25s 400s
Three-dimensionaproblem 195 X10° s 25 X10' s 32 X10°s
(2-26 days) (289 days) (101 years)

@ Mb =megabyte=1C° bytes;Gb=gigabyte=10° bytes.
b Assumessustainectalculationrate of 500 Mflops.
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problem and the scalirg behaviourshowsthe total inadequacyof this approachappied to three-
dimengond problens.

Of course, the comparisonaboveis somevhatnaive. Onecanimprovethe scalingsasso@tedwith
memoy and operationsconsicerably by the use of more sophistcated bookkeging techniquesin
fact, Karypis and Kumar*® haveshown that renumtering to minimizefill-in during the factorization
of the matrix canresultin afull orderN saving in both memoryandoperdions. However,the three-
dimensond problemstill scalesas memoy to the N* and operaions to the N, which still poses
formidable,if not insurmounable, challengesfor numertal analsis of suchproblems.

Clearly a different apprachis needel for the solution of threedimensonal problems.The mog
promising apprach to theseproblemshingeson advancesn new conputer hardware,massvely
pardlel supercorputers,and novel algarithms and implemenationson suchhardwae, particulaly
iterative matrix solution techniques coupkd with appr@riate precondiioners and strategiesto
minimize commurications coss. Tezduyaret al.?’ highlight theseapproachs in a recentreview
article; our own efforts in this areahavebeendocumengd in Reference 5 and 6. Our apprachis
briefly discussd in the next sectians, followed by resultsfor the threedimension& lid-driven flow
and comparisos of implementatiors on the Cray T3D andthe Thinking Machines CM-5.

2. FORMULATION AND IMPLEMENTATION
2.1. Governingequatiors
We consier steadyflows govemnedby the three-dimengnal NavieStokesequatians written for
an incompiessiblefluid. This apprachyields the equatias
o W=V-T, 1)
V:v =o, )
wherev is thefluid velocity and V=(0/d)e, +(3/_%)ey -+(0/d)e. is the gradientoperator(wheree,

denogsunit co-ordnatevectory. Thestresgensor 1 is given in termsof thedynanic presurep, and
the deviatoric stresst as

T=—l 41, 6)

where the deviatoric stressof a Newtonian fluid, 7, is linearly proportion4 to the velocity gradient

=W +W"), (@)

with L representingthe viscosty of the fluid.

While we haveoften beenconcenedwith coupledflows driven by buoyancyeffects®—® here we
constderonly thedriving force of the movinglid of the enclosingbox. Along all surfaces of this box,
no-sip velocity conditionsare applied.

2.2. Galerkin finite elemet method

The Galekin finite elementmethod® is usedto spatally discretze the aboveequaions. Sincewe
are interesed in computing flows of only moderateintensty, stabilizaton techniques for the
advedion termsarenotemployel. We emdoy a standardnixedinterpolationschemée?® Thevelocity
andtemperatire fields are expresse aslinear combindions of Lagrangian triquadratic polynomials
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@ with 27 nodes per hexahedra element, while the pressureis approximaed by a sum of
discontinuouslinear bass functions I with four degreesf freedomper element:

v (x,»,2) )

N

'Uy(x,y,z) = ,Lg) (Ij(x,y,z), (5)
v(x,y,2) z o)

P(x,y, Z) :Zi P(i)ri(x,y, z), (6)

where N is the total numker of nodesand N, is the numker of presureunknowns.

We apply the Galerkin proceduren the standad mannerto produceweak-orm weightedresidué
equaions. Bounday condiions areinvokedusingroutinefinite elementprocedurs 22 The weighted
residud equatios are evauatednumercally using 27-point Gauss quadratue on eachelement to
yield a large setof non-linearalgebrac equatims which we denoteas

R(x) =0, @)
where R is the residud equaton and x is the vector of unknownscomprising the conplete set of
velocity and pressurdanterpolants.

Equaton (7) is solved using Newtonian iteration. An initial guessof the vecta of unknownsis
madce, x©), andsuccesiveupdatesto thevectorof unknownsarecomputa usingtheiterativescheme

X(k_H) :X(k) +gk)’ (8)

where k is theiterationcouner. The update vectord® is generatedy soluion of the linearequaton
set

IONFY = RO, ©)

where J; =aR, /0x; are elemants of the Jacolian matrix.

To terminatethe Newton iteration, it is necesary to judge when a solution to ec&uatim (7) is
conveged.The criterion we usehereis thatthe maxmum entryin the updatevectorg" belessthan
10~ (ascomparel with a maximum velocity of one).

2.3. Implementation

The algorithm descriled aboveis implemented on the Thinking Machines CM-5 and Cray T3D;
both are distributed memoly, multile-procesor supercorputers.For the sakeof brevity we present
only the mog essatial aspets of the pardlel implementatio here.Interestedreadersshouldconsut
Referenceb for more detals.

In orderto effectively exploit the featuresof thesemachires,individualfinite elementdatasetsare
maped to processa® and the element-level componerg of the residud equatios and Jacolan
matrix (which arise from the Newton iteraions) are calculated concurretly. When these
computationsare conplete, the GMRES (genealized minimal residud) iteraive schemeof Saad
and Schutz® is usedwith diagonal premnditioning to solve the linear algebraic system.To take
advanageof the local datastrucure descrited above,the matrix—vectormultiplicationsof GMRES
areconductedvith element-levelrather thanglobd residud andJacobiamrmatrix elements.Therdore
only the resultingupdae vectorsneedto be mappedto the global level?

This apprach sideseps many of the scalirng problens discussd in Section 1. By storing only
elementalpiecesof the Jacobiammatrix, the global Jacobiameedneverbe actually assembledand
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issuesof bookkeepiig andmatrix strucure areno longe a problem.In addtion, any globd Jacolian

will requiresome zero elementsto be stored;thesezero elementsare not needel by the iterative
solver and are not storedin the local Jacobianmatrices. Therefoe evenrelatively simple-minded,
elemental-laseddatastructureslead to more efficient memoy utilization for pardlel methods The
operdion countasso@tedwith succeasfuliterativesolutionstrategiesscaleswith the effort needel in

asimplematrix—vectormultiply or simply thetotal numker of non-zeroelementsin the JacobianFor
our element-basel datastructurethis scaling shouldbe of orderN3; however, excegionsto thisided

behavour will be briefly mertionedin Secton 4.

An issueof importan@ in any pardlel implementdion is that of communication overhead. The
costof communicding betweernthelocal andglobd levds (scatteing andgathering)is a function of
the positionsof the elementswith resgectto eachothe on the processas. In this study we follow the
simple straegy of our initial appract’ which assignsthe elements to processorsin a comrpletely
arbitrary manner.While this straegy can be betteed by employing partitioning strateges'>? the
effecton our algorithm is not dramaticowing to the alreadyhigh degreeof datalocality imposel by
our higherorder, triquadratic finite element basis®

3. RESULTS

Figure 1 shows the problemgeomety andfinite elementmeshemployel in our computaions, which
conssts of 16,000 triquadratic elements with a total of 472,483 unknowns. Typically we solve
problemswith about 10°~1 unknowns, so this problemsize is represatative of our work. The
cavity lengthis threetimesthe heightandwidth. This particular cavity shapehasbeenstudiedbefore,
both experimenally?>2* and theoretially,'®~%! so it makesa logical choice. For all the timing
calculationsreportedhere we employal 300 GMRES iterationswithin eachNewton iteration and
havetakena total of 25 Newton iterétions.

3.1. Lid-driven flow

We solved a seriesof steady threedimensonal flow problemsusing zerothorder continuaton;
nanmely, we usedthe soluion at a lower value of Reynols number asaninitial guesgo the solution
at a highervalue (Reynots numberRe = VL/v, where V is the velocity of thelid, L is the width of

,7  Separation \-[

Y--=-d---

I
e ength

Figure1. Domainandmeshfor 3D lid-driven cavity. Arrows showdirectionof lid motion. Schematiaiagramshowsprimary
flow stateat symmetryplaneand definition of separatiodengthfor secondaryeddyin downstreantorner
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the box and v is the kinematic velocity of the fluid). By doing so, we were ableto obtan converged
soluionsat Reup to 500. Attemptsto obtainconvegedsolutionsat substarially highe valuesof Re
failed, however We also conputedsteadystatesof the two-dimensimal lid-driven cavity over the
same rangeof Re

Figure 2 showsvelocity vector plots of the three-dimenmnal flow on the symmetry planeat the
cente of the cavity span(seeFigure 1) at seveal valuesof Re (the Re=700 caseis not a converged
solution, sonethingwe commenton shortly). Figure 3 showsvelocity vector plots at variousplanes
along the cavity span(z=0 correspadsto the symmety planeandz=1-5 correspodsto the cavity
end).For comparison,Figure 4 showsvelocity vector plots of the flow in a two-dimensionalcavity.
The flow consstsof a primary vortexin the form of a cylindrical roll thatspanghe cavity from endto
end. There also are secondaryrolls causedby separabn in the lower corners. Thus a two-
dimensgond cross-gction of the flow in a three-dimen®nal cavity is similar to appeaanceto the
flow in a two-dimensionalcavity. Figure 3 shows that thereis somedepature from purely two-
dimensond flow at the cavity ends,however

Figure 5 shows a comparisonof the separatioriength of the downstreansecomlary eddy (defined
in Figure 1) predcted by two-dimensionaland three-dimen®nal simulations. Also shownin the
figureareestimatesnace by Aidun etal.?? from their experiments.In eachcasea differentmethodis
usedto estimae the locationof separabn. Aidun et al. mace a visual estimae asdescriked in their
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(a) Re=100 (b) Re =300

() Re=500 (d) Re=700

Figure 2. Velocity vector plots on symmetryplaneof 3D cavity (seeFigure 1) at severalvaluesof Re
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Figure 3. Velocity vector plots at variousplanesalong cavity span(z =0 correspods to symmetryplaneandz =1-5
correspods to cavity end)at Re =400

paper In the caseof the simulationswe usethe criterion that the vorticity passeshroughzeroat a
sepaation point. In the two-dimensionalcasewe computethe vorticity using a highly accurate
smaothing technique,then usea numericalmethodto accuately locate zero of the vorticity at the
bourdary (for detailsof this procalure,seeReference 16 and17). In the threedimensonal casewe
measurethe sepaation point at the symmery planeusing image plots of an unsmootlted vorticity
field, a lessaccurateprocedure Thereis goodagreementbetwee our three-dinensionalsimulaions
andthe experimendal data,given expeimentaluncetainty andthe appraimate natureof our estimate
of the sepaation point. Thereis a sysematic deviation betwea the two-dimensionaland three-
dimensgond simulaions, but this is to be expeded given the presenceof end effectsin the three-
dimengond flow, sonethingwe discussat length below.

At high enoughRe a tertiary eddy appeas in the corner.Figure 6 shows a comparisonof the
sepaation length of this eddy prediced by two-dimensionaland three-dimenend simulaions.
There is a large difference betwee the two-dimensional and three-dimen®nal results. The
explanationfor the different is unclear, but it seemstoo large to attributeto approaimation error.
Again we presumethat end effectsare somehow respondile.

The comparisonof two-dimensionalwith threedimengonal flow statesis interesing, becase at
the limit of Stokes flow and infinite cavity spanthe flow on the symmetry plane of the three-
dimengond cavity is idertical with the flow in a two-dimensonal cavity. Suwch is not the caseif
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Figure4. Velocity vectorplotsin 2D cavity at severalvaluesof Re
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Figure5. Separatioriength of downstreansecondaryeddy (definedin Figure 1) versusReynoldsnumber.Predictionsof 2D
and 3D simulationscomparedwith experimetal resultsof Aidun et al.??
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Figure 6. Separatioriength of downstreantertiary eddy versusReynoldsnumber.Predictionsof 2D and 3D simulations

eitherthe cavity spanis finite or Re > 0. In theformercase endeffects altertheflow atthe symmetry
plare, wherea in the latter, non-inear effects allow the possiblity of other stateswhich do not
correspondto the two-dimensionalfflow.

To undestandwhy the solution at the symmaery plane of the threedimensioné cavity is not
necesarily a solution to the two-dimensonal cavity problem we look at equatons (1) and (2).
Symmetry implies that the spanwse componentof velocity and the spanwse derivatives of all
quantties arezero(i.e. 2, =0, d/a(-) =0). Dropping . /& from equaion (2) shows that the three-
dimensgond solutionat the symmery planesatsfiesthe two-dimensonal continuity equaion. The z-
conmponent of equatio (1) reducesto d,/&*> =0, which is decouged from the x- and y-
conmponents.The answer musttherebre lie with the x- andy-componats of equation (1). Because
1. =0, the inertial terms are the samein either case.Howeve, the viscousterms include the
quantties &1, /&> =0 and 1), /&> =0, which neednot be zera In fact, the experimens of Aidun
etal.?? showthe existenceof flow statesn which neitherof thesequantties is zera Thesequantties
correspondto viscousshearacting on the symmaery plane,which ultimately mustbe tracedto the
cavity ends.

A comparsonof Figures2 and4 reveals that the flow on the synmetry planeis nealy idertical
with the two-dimensionalcavity flow at Re =100 and 300. Howeve, at Re =500 thereis a
significant depature betwea the two-dimensional and threedimengonal results. In the two-
dimensond casethe cente of the primary vortex moves closer to the cente of the cavity, consisent
with Burggraf's® explanationof the tendencyof this vortex to apprach potential flow. In the three-
dimengond case,however, the vortex centreremans at nearly the sane location over the range
Re =300-500. The vortex becomessonmewhatlesscircular nearits centreas Reis increa®d, the
oppasite of its tendencyin the two-dimensonal case Presunably the differenceis a consequereof
end effects.

At first thoughtwe might surmisethatthe importanceof endeffects shoulddiminish at higherRe
becawseof the presumpion thatendeffects areconfinedto a boundarylayer.Howeve, it appearshat
the influence of the cavity endsis conveded towardsthe symmery planeto sone extentby the
transvese flow andthatthis effect becomesmoreimportantat higha Re This view is supportel by
the observaibn thatthevortex cente is highe up andfurther downstreamnearthe cavity endsthatit
is atthe symmetry plare, asshownin Figure3. Thusthe tendencyof the vortexcentreto movecloser
to the centreof the symmery plare at highe Reis couneractedby the conveded influence of the
endsto pushthe vortex centrehigher up andfurther downstream
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Aidun et al. find that the flow stae shown in Figures2 and 3 is stableat low valuesof Reand
persstsat Reup to about825. They alsoshowthat compeing stateswhich haveTaylor—Gartler-like
vortices coexistat Re <825, but the actualstae thatis observeddepend on the start-up history of
the expeiment. In all our calculatons we have obtaned convergedsoluions only in the caseof
cavity-spaniing cylindrical rolls. We suspet that the difficulty in obtaning a convergedsoluion at
Remuchabove500is at leastpartly a resultof the presenbf bifurcaions at nearbyvaluesof Re(we
rule outthe possibility thatthe mesh is under-refiiedat thesemodest valuesof Re basedn extensive
studesin the two-dimensionalcavity at high Reyrolds number) In the Re =700 caseof Figure 2 it
appeas that the solution is undegoing a dramaic rearraagementto anoter flow state, but as
mertioned earlier, this solutionis not convergedo our saisfaction, sowe canonly speculateln the
future we hope to investigatethis issuefurther by integrating the time-degndentNavierStokes
equaions.

3.2. Codeperformance

A schemat diagram detailing the relative costsof differentcommunications scheme®n the T3D
is shownin Figure 7. Three apprachesare consdered.PVM (Paallel Virtual Machine) is a cross-
platform softwarepackaethatenabesmessag@assingacrossheterogeeousnetwoiks (but alsocan
be implementedon singe multiprocessomachines)MPI (MessagePassingnterface)is a platform-
independen stardard for commurications acrossdistribuied memory systems(including heteo-
geneos netwoks and multiprocessor machires). SHMEM (SHarel MEMory library) is a
communicaions library specift to Cray multiprocessomadines.

Somehing to considerin evaluaing different messaggassig schemess the extent to which the
schene is optimized to take advantageof machire architecture and underlying native languages
PVM, for instane, is a softwareimplementationof messag@assinghatrestrictsthe extent to which
communicaions canbe optimized to takeadvantagef a specift machire. MPI, onthe othe hand,is
a communicdions standad that leaves implemenation detdls to the machire vendor thereby
enabing better optimizaion than PVM. Likewise, SHMEM is a vendorspecificimplementation,
agan allowing for betteroptimization than PVM.

In thelight of theseobservaibnsit is not surpiising that SHMEM outperforns the othe methods
Samewhat surprisng is that PVM performs slightly better than MPI, the opposte of what we
expeded. Our testswerecondut¢ed with anunsuppeted implementationof MPI, however, whichwe
surmise was not well optimized on the T3D. Despitethes differences,all three mesage-pasing
schenesperformadequatly. Eventhoudh MPI is not the faste$ schemdn our tests,it seens a good
choicebecaseit is portabk andits implementaion is moreflexible thanPVM, with greatermpotential
efficiency.

A conmparisonof the algarithmic times for the codeimplementedon thetwo machiresis shown in
Tablell. The comparsonis madebetweernthe CM-5 usingthe data-parallemodeandthe T3D using
SHMEM, the fastestschemetestedon that machire. Cdculating the element-level Jacolian matrix

MPI
PVM

B SHMEM

¥ T T T T T
0 500 1000 1500 2000 2500 3000
Total time (seconds)

Figure7. Comparisorof solutiontimesusingvariousmessage-passirsgheme®n T3D (256 processors25 Newtoniterations,
300 GMRES:iterationsper Newtoniteration)
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Tablell. Comparisorof T3D and CM-5 implementationg256 processors25
Newtoniterations,300 GMRES iterationsper Newtoniteration} All timesin

seconds
Programmeask T3D CM-5
Calculationof Jacobiarmatrix and vector of residuals 172 180
Solution of linear equationsetvia GMRES
Matrix—vector multiplications 159 205
Gathey/scattercommunications 1032 505
Total time 1985 1132

and vector of residuds takes nearly the sameamaunt of time on both machires. Matrix—vedor
multiplicationsin GMREStakeslightly longeronthe CM-5, but the differenceof 20%is modest. By
far the biggest difference is in the gather/scater calls, which accountfor the bulk of the
communicdions cost. Here the CM-5 outpeaforms the T3D by a factor of two in our tests,but we
emphasizethat no effort was madeto optimize buffer prepaation and referencig (includedin the
gatrer/scattertimings); optimization potentially could redue this performane gap.

The numbersin Table Il do not tell the whole story, since the progmamming methodsbeing
comparedare quite different Messge passingon the T3D using SHMEM, while not portable,is
more nearly so than dataparallel progammingon the CM-5. A well-optimized MPI library might
perform nearly aswell as SHMEM, and althoughperhas slower than a data-paralle code on the
CM-5, would be conpletely portable.

Besicesportability andefficiengy, we areconcenedwith how the methodsscalewith the number
of processa. Sucha comparisonis shown in Figure 8. Codeperformane scalesreasonalyl well on
bothmachires.Doubling the numkber of processorsfrom 256to0 512 gives a reductionof 40%in total
time on the CM-5 and 35% on the T3D, comparedwith a theaetical maximum reductionof 50%.
The slightly betterscalirg on the CM-5 is modly dueto betterscalirg of commuricationscost which
agan is boughtat the expeng of portablity.

4000
q 3D
g 3000 m  CMS5
=
Q
Q
3
g 2000 Ideal scalability
=
‘5 4
= 100 fF 00 ETees
0 1
128 256 512

Number of processors

Figure8. Scalingof solutiontimeswith numberof processoren CM-5 andT3D (25 Newtoniterations, 300 GMRESiterations
per Newtoniteration)
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4. CONCLUDING REMARKS

We did not find a dramaic differencein speedbetwea the CM-5 andT3D in our comparison.The
CM-5wasnealy twice asfastoverdl, but mostof the differencewasin communicaionscost bought
at the expeng of portablity. By far a more important issue is the rate of convergene of
preonditioned GMRES. Using diagonalprecondiioning, GMRES convegesslowly, or not at all,
when solving incompessibleflows, espedlly interior flows with much structure.Slow convegence
clouds the issuessurroundng operdion count discussd earlier. As mertioned in Section2.3, the
operaion count for iterative solution of equation(9) scaks as N>. The total operdion count also
scalesasthetotal numberof GMRESiterations however Should a greatmary GMRESiterationsbe
requred to obtain convegence the methodbecomeaunatractive

Explicit useof the continuity equatian is partof the problem Continuty residuds give azeroentry
on the diagonalof the Jacobianwhich makesstrict diagonalprecondiioning indefinite. To fix this
problem,we usea smallnumterin place of zerofor theseentriesin the diagonalpremnditioner.The
rate of convegenceis quite sensitiveto the value of this ad hoc paraneter, however’ Use of
stabilized methodssuch as PSPGand Galekin least squaes obviates the needto use an ad hoc
paraneter?’ Our preliminary tess show that thesemethodsconvergefaster than the converional
Galekin methodusingdiagonal precondiioning when appliedto interior incompiessibleflows such
asthe lid-driven cavity.

It is clear that the current generabn of masively pardlel supercormputers makes three-
dimensond flow calculationsfeasible Therepot by Tezduya etal.?” of solvingseveal conplicated
three-dimenmnal flows holdsout greda promise that suchcalculatons will becomeroutinewithin a
few years.Much work remainsto be donein the areaof premnditioning, however, particulaly
preanditionersfor incompresible flows which canbe paralleized efficiently.

ACKNOWLEDGEMENTS

This work was supportel in part by the National ScienceFourdation undergrant DMR-905838.
Compugtionalresourcesvere providedby the University of Minnesot Supercorpute Institute and
the Army High PerformanceComputng ResearctCente underthe auspice®f the Departmentof the
Army, Army Reseach Labordory co-operéive agreementDAA H04-952-0003/contract DAAH04-
95-G-0008,the conentof which doesnot necesarily refled the postion or policy of the governmer,
and no official endorserant shouldbe inferred.

REFERENES

. J.J. Derby, ‘Theoreticalmodelingof Czochralsk crystal growth’, MRSMRSBuUIl., XIIl (10), 29-35(1988).

. J.Derby,S. Kuppura, Q. Xiao, A. YeckelandY. Zhou,‘Large-scalenumericalmodelingof bulk crystalgrowthfrom the
melt and solution’, in J. P. van der Eerdenand O. S. L. Bruinsma(eds), Scienceand Technologyof Crystal Growth,
Kluwer, Dordrecht 1995,pp. 111-122

3. J.J. Derby, ‘Macroscojic transportprocessesluring the growth of singlecrystalsfrom the melt’, in J. P. vander Eerden
andO. S. L. Bruinsma(eds),Scienceand Technologyof Crystal Growth, Kluwer, Dordrecht,1995, pp. 97-110.

4. J.J.Derby,S.BrandonA. G. SalingerandQ. Xiao, ‘Large-s@le numericalanalysisof materialgprocessingystemshigh-
temperatureerystal growth and molten glassflows’, Comput.MethodsAppl. Mech.Eng, 112 69—89(1994).

5. A. G. Salinger,Q. Xiao, Y. Zhou andJ. J. Derby, ‘Massivel parallelfinite elementcomputationof three-dinensional,
time-dependenincompressile flowsin materialsprocessingystems’ ComputMethodsAppl. Mech.Eng, 119 139-156
(1994).

6. Q. Xiao, A. G. Salinger,Y. Zhou andJ. J. Derby, ‘Massively parallelfinite elementanlaysisof coupled,incompresible
flows: a benchmak computationof baroclinicannuluswaves’, Int. j. numer.methodsfluids 21, 1007-104 (1995).

7. Q. Xiao andJ. J. Derby, ‘Three-dimensionaimelt flows in Czochralskioxide growth: high-resolution massivelyparallel,

finite elementcomputation$s J. Cryst. Growth, 152 169-181(1995).

N -

INT. J. NUMER. METH. FLUIDS, VOL 24: 1449-1461(1997) (©1997by Jchn Wiley & Sons,Ltd.



10.

11.

12.

13.

14.

15.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

PARALLEL CALCULATION OF 3D LID-DRIVEN CAVITY FLOW 1461

. Q. Xiao, S. Kuppuio, A. Yeckel andJ. J. Derby, ‘On the effectsof ampouletilting during vertical Bridgmangrowth:

three-dimensinal computationsvia a massivelyparallel, finite elementmethod; J. Cryst. Growth 167, 292—-304(1996).

. O. R. Burggraf,'Analytical andnumericalstudiesof the structureof steadyseparatedlows’, J. Fluid Mech, 24, 113-151

(1966).

U. Ghia,K. N. GhiaandC. T. Shin, ‘High-Resolutionsfor incompressibleflow usingthe Navier—Stokegquationsanda
multi-grid method’,J. Comput.Phys, 48, 387-411(1982).

R. Schreiberand H. B. Keller, ‘Driven cavity flows by efficient numericaltechniqes’, J. Comput.Phys, 49, 310-333
(1983).

P.M. GreshoS.T. Chan,R. L. LeeandC. D. Upson,'A modifiedfinite elementmethodfor solvingthe time-dependen
incompressile Navier—SokesequationsPart2: Applications’, Int. j. numer.methodsluids 4, 619-640(1984).
T.J.R.HughesW. K. Liu andA. Brooks, Finite elementanalysisof incompressile viscousflows by the penaltyfunction
formulation’, J. Comput.Phys, 30, 1-60(1979).

J.H. MorrisonandM. Napolitano, Efficient solutionsof two-dimensionalincompressibleteadyviscousflows’, Comput.
Fluids, 16, 119-132(1988).

J.L. Sohn,'Evaluation of FIDAP on someclassicallaminarandturbulentbenchmaks’, Int. j. numer.methodsluids 8,
1469-149(0(1988).

. A. Yeckel, ‘Multiple solutionsin the lid-driven cavity’, J. Comput.Phys, submitted.
. A. Yeckel, ‘Flow turnaroundin blockedchannelsat low Reynoldsnumber’,J. Fluid Mech, submitted.
. J.Kim andP. Moin, ‘Application of fractional-sep methodto incompessibleNavier—Stoks equatiors’, J. Comput.Phys,

59, 308-323(1985).

C.J.Freitas,R. L. Street,A. N. Findikakis andJ. R. Koseff, ‘Numerical simulationof three-dimasionalflow in a cavity’,
Int. j. numer.methoddluids 5, 561-575(1985).

C.J.FreitasandR. L. Street,Non-lineartransientphenomenan a complexrecirculatingflow: a numericalinvestigation,
Int. j. numer.methodsluids 8, 769—802(1988).

C.-Y. PerngandR. L. Street, Three-dmensionalunsteadyflow simulatiors: alternativestrategiedor a volume-aveaged
calculation’, Int. j. numer.methoddfluids 9, 341-362(1989).

C. K. Aidun, N. G. Triantafilopoulos and J. D. Benson,'Global stability of a lid-driven cavity with throughflow:flow
visualizationstudies’,Phys.Fluids A, 3, 2081-2®@1 (1991).

J.R. KoseffandR. L. Street,Visualization studiesof a sheardriventhree-dimensinal recirculatingflow’, J. Fluid Eng,
106, 21-29(1984).

J.R. KoseffandR. L. Street, The lid-driven cavity flow: a synthesif qualitativeand quantitativeobservatias’, Trans.
ASME 106, 390-398(1984).

G. Dahlquistand A. Bjorck, NumericalMethods transl.by N. Anderson,Prentice-Hd| EnglewoodCliffs, NJm 1974.
G. KarypisandV. Kumar,‘A fastandhigh quality multilevel schemdor partitioningirregulargraphs’, Tech.Rep.TR95-
035 Department of Computer Science, University of Minnesota, 1995; also available on WWW at URL
http://www.cs.umnedy/~karypis/papergmlevel_seriaps.

T. Tezduyar S. Aliabadi, M. Behr,A. Johnsony. Kalro andM. Litke, ‘High performamre computirg techniguesfor flow
simulations, in SolvingLarge-Sca¢ Problemsin Mechanics Wiley, New York 1996.

T. J. R. Hughes,The Finite ElementMethod Prentice-Hill, Englewod cliffs, NJ, 1987.

P. M. Gresho,Contribution to Von Karmaninstitutelectureserieson computaional fluid dynamic: advectior-diffusion
and Navier—Stokesquatios’, UCRL-92275 LawrenceLivermore National Laboratory,Livermore, CA, 1985.

Y. SaadandM. H. Schultz, GMRES: a generalize minimal residualalgorithmfor solvingnonsymmeic linear systems’,
SIAM J. Sci. Stat. Comput, 7, 856-869(1986).

Z. Johan,Data parallelfinite elementiechniquedor large-scat computationafiuid dynamic’, Ph.D. Thesis Department
of MechanicalEngineering StanfordUniversity, 1992.

A. PothenH. D. SimonandL. Wang,'Spectralnestedlissection’,Tech.Rep.RNR-92-003NASA AmesResearclCenter,
Moffet Field, CA, 1992.

(©1997by JohnWiley & Sons,Ltd. INT. J.NUMER. METH. FLUIDS, VOL 24: 1449-1461(1997)



