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SUMMARY

Steady flows in a three-dimensional lid-driven cavity at moderate Reynolds number are studied using various
methods of parallel programming on the Cray T3D and Thinking Machines CM-5. These three-dimensional
flows are compared with flows computed in a two-dimensional cavity. Solutions at Reynolds number up to 500
agree well with the experimental data of Aidunet al. (Phys. Fluids A, 3, 2081–2091 (1991)) for the location of
separation of the secondary eddy at the downstream wall. Convergence of the three-dimensional problem using
GMRES with diagonal preconditioning could not be obtained at Reynolds number greater than about 500. We
speculate that the source of the difficulty is the loss of stability via pitchfork and Hopf bifurcations identified by
Aidun et al.The relative performance of various methods of message passing on the Cray T3D is compared with
the data-parallel mode of programming on the CM-5. No clear advantage between machines or message-passing
methods is distinguished.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Massively parallel computing platforms and algorithms hold great promise for analysing a spectrum
of issues involving fluid mechanics and transport phenomena in systems where three-dimensional and
time-dependent behaviours predominate. Such behaviour is characteristic of many materials-
processing systems, such as those employed to produce large, single crystals for photonic and
electronic devices.1–3 It is the study of these systems that drives our development of parallel
algorithms.4–8

In this paper we aim to compare the relative performance of the Thinking Machines Corporation
Connection Machine 5 (CM-5) and the Cray T3D. Both are massively parallel, distributed memory
supercomputers. For this comparison we choose to compute a classical problem, a three-dimensional
lid-driven cavity flow, which is representative of the non-linear flows found in many materials-
processing systems of interest to us. While two-dimensional lid-driven flow has been extensively
analysed using a wide variety of techniques (see e.g. References 9–17), relatively few three-
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dimensional analyses have been performed.18–21 This problem choice is also prompted by
experimentalobservationsof interestingthree-dimensional flow structuresin this simple system.22–24

While the numerical analysis of two-dimensional and axisymmetric flow is routine today,
understanding three-dimensional, time-dependent,incompressiblefluid flowsremainsadaunting task
via numerical analysis.A simple illustrative calculation bearsout someof the challengesassociated
with three-dimensional computations.Considerthenumerical calculationof asteadyflow field overa
two-dimensional domain with N grid pointsalongeachedge.We will alsoconsiderthattherearefive
degreesof freedomat eachgrid point to representthreecomponentsof the velocity field, the fluid
pressurefield andthetemperaturefield. Obviously thereare5N2 mathematicaldegreesof freedomin
this representation. Sincethis is a non-linearproblem, Newtoniterationis commonly applied to the
discrete equations that arise after application of some numerical approximation of the original
equations.TheJacobian matrix thatarisesfrom this techniqueis unsymmetric andindefinite owing to
the underlying nature of the incompressible Navier–Stokes equations. As such, direct solution
methods have been gainfully applied to the resulting linear algebraic problem.4 A simple
bookkeepingschemeresultsin a sparse,structuredJacobianmatrix which hasa half-bandwidth of
order 5N. The memory requirementsof this approach (storing the entire Jacobianmatrix) scaleas
25N3, and the computational effort expendedusinga direct solution technique,which scalesas the
size of the system times the half-bandwidth squared,25 is approximately 125N4 floating point
operations.

Applying the identical approachto a three-dimensional problemyieldsstrikingly different results.
Consider now a three-dimensional cube with N grid points per edge, yielding a total of 5N3

mathematicalunknowns.TheresultingJacobian matrix of this systemhasa bandwidth of order5N2.
The memory requirementsof this approach(againstoringthe entireJacobianmatrix) scaleas25N5,
andthe computational effort expended usinga direct solutiontechnique scalesas125N7 operations.

The implications of the different scalings of the aboveapproachare madeclear by the results
computedin TableI, whereseveralsystemsizesareconsidered.Note that two-dimensionalproblems
with N� 50–200arefeasiblefor a largevector computerof today, suchasthe Cray C90. However,
both memory and executioneffort are prohibitively large even in the N� 50 three-dimensional

Table I. Simplescalingof computationsfor problemdiscussedin text

N � 50 N � 100 N � 200

Total numberof unknows
Two-dimensionalproblem 1�256 104 56 104 26 105

Three-dimensionalproblem 6�256 105 56 106 46 107

Memory requireda

Two-dimensionalproblem 25 Mb 200 Mb 1�66103 Mb
Three-dimensionalproblem 62�5 Gb 26 103 Gb 6�46104 Gb

Operationsrequiredper iteration
Two-dimensionalproblem 7�816 108 1�2561010 261011

Three-dimensionalproblem 9�7761013 1�2561016 1�661018

Time requiredper iterationb

Two-dimensionalproblem 1�56 s 25 s 400 s
Three-dimensionalproblem 1�956 105 s 2�56 107 s 3�26109 s

(2�26 days) (289 days) (101 years)

a Mb�megabyte� 106 bytes;Gb� gigabyte�109 bytes.
b Assumessustainedcalculationrateof 500 Mflops.
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problem and the scaling behaviourshowsthe total inadequacyof this approachapplied to three-
dimensional problems.

Of course, thecomparisonaboveis somewhatnaive.Onecanimprovethescalingsassociatedwith
memory and operationsconsiderably by the useof more sophisticatedbookkeeping techniques.In
fact, Karypis andKumar26 haveshown that renumbering to minimize fill-in during the factorization
of thematrix canresultin a full order-N saving in bothmemoryandoperations.However,the three-
dimensional problemstill scalesas memory to the N4 and operations to the N6, which still poses
formidable,if not insurmountable,challengesfor numerical analysis of suchproblems.

Clearly a different approach is needed for the solutionof three-dimensional problems.The most
promising approach to theseproblemshingeson advancesin new computer hardware,massively
parallel supercomputers,andnovel algorithms and implementationson suchhardware, particularly
iterative matrix solution techniques coupled with appropriate preconditioners and strategies to
minimize communications costs. Tezduyaret al.27 highlight theseapproaches in a recent review
article; our own efforts in this areahavebeendocumented in References 5 and6. Our approach is
briefly discussed in the next sections, followed by resultsfor the three-dimensional lid-driven flow
andcomparisons of implementations on the Cray T3D andthe Thinking MachinesCM-5.

2. FORMULATION AND IMPLEMENTATION

2.1. Governingequations

We considersteadyflows governedby the three-dimensional Navier–Stokesequationswritten for
an incompressiblefluid. This approachyields the equations

rv ? Hv � H ? T; �1�

H ? v � 0; �2�

wherev is thefluid velocity andH � �@=@x�ex � �@=@y�ey � �@=@z�ez is thegradientoperator(whereei

denotesunit co-ordinatevectors). Thestresstensor T is given in termsof thedynamic pressurep, and
the deviatoric stresst as

T � ÿpI � t; �3�

where the deviatoric stressof a Newtonian fluid, t, is linearly proportional to the velocity gradient:

t � m�Hv � HvT
�; �4�

with m representingthe viscosity of the fluid.
While we haveoften beenconcernedwith coupledflows driven by buoyancyeffects,6–8 herewe

consideronly thedriving forceof themovinglid of theenclosingbox.Along all surfaces of this box,
no-slip velocity conditionsareapplied.

2.2. Galerkin finite element method

TheGalerkin finite elementmethod28 is usedto spatially discretize theaboveequations.Sincewe
are interested in computing flows of only moderateintensity, stabilization techniques for the
advection termsarenot employed. We employ astandardmixedinterpolationscheme.29 Thevelocity
andtemperature fields areexpressed aslinear combinations of Lagrangian triquadratic polynomials
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F
i with 27 nodes per hexahedral element, while the pressureis approximated by a sum of

discontinuouslinear basis functionsGi with four degreesof freedomper element:
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where N is the total number of nodesandNp is the number of pressureunknowns.
We apply theGalerkinprocedurein thestandard mannerto produceweak-form weightedresidual

equations.Boundary conditionsareinvokedusingroutinefinite elementprocedures.28 Theweighted
residual equations are evaluatednumerically using 27-point Gauss quadrature on eachelement to
yield a largesetof non-linearalgebraic equations which we denoteas

R�x� � 0; �7�

where R is the residual equation and x is the vector of unknownscomprising the complete set of
velocity andpressureinterpolants.

Equation (7) is solved using Newtonian iteration. An initial guessof the vector of unknowns is
made,x�0�, andsuccessiveupdatesto thevectorof unknownsarecomputed usingtheiterativescheme

x�k�1�
� x�k� � d

�k�
; �8�

where k is the iterationcounter.The update vectord�k� is generatedby solution of the linearequation
set

J�x�k��d�k� � ÿR�x�k��; �9�

where Jij � @Ri=@xj areelements of the Jacobian matrix.
To terminatethe Newton iteration, it is necessary to judge when a solution to equation (7) is

converged.The criterion we usehereis that themaximum entry in theupdatevectord�k� belessthan
1074 (ascompared with a maximum velocity of one).

2.3. Implementation

The algorithmdescribed aboveis implementedon the Thinking Machines CM-5 andCray T3D;
both aredistributed memory, multile-processor supercomputers.For the sakeof brevity we present
only themost essential aspects of theparallel implementation here.Interestedreadersshouldconsult
Reference5 for moredetails.

In orderto effectivelyexploit thefeaturesof thesemachines,individualfinite elementdatasetsare
mapped to processors and the element-level components of the residual equations and Jacobian
matrix (which arise from the Newton iterations) are calculated concurrently. When these
computationsare complete, the GMRES (generalized minimal residual) iterative schemeof Saad
and Schultz30 is usedwith diagonal preconditioning to solve the linear algebraic system.To take
advantageof the local datastructure described above,the matrix–vectormultiplicationsof GMRES
areconductedwith element-levelrather thanglobal residual andJacobianmatrix elements.Therefore
only the resultingupdate vectorsneedto be mappedto the global level.5

This approach sidestepsmany of the scaling problems discussed in Section 1. By storing only
elementalpiecesof the Jacobianmatrix, the global Jacobianneedneverbe actually assembled,and
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issuesof bookkeeping andmatrix structureareno longer a problem.In addition, anyglobal Jacobian
will requiresome zero elementsto be stored;thesezero elementsare not needed by the iterative
solver and are not storedin the local Jacobianmatrices. Therefore evenrelatively simple-minded,
elemental-baseddatastructureslead to more efficient memory utilization for parallel methods. The
operation countassociatedwith successfuliterativesolutionstrategiesscaleswith theeffort needed in
a simplematrix–vectormultiply or simply thetotal number of non-zeroelementsin theJacobian. For
our element-based datastructurethis scaling shouldbeof orderN3; however,exceptionsto this ideal
behaviour will be briefly mentioned in Section 4.

An issueof importance in any parallel implementation is that of communication overhead.The
costof communicating betweenthe local andglobal levels (scattering andgathering) is a functionof
thepositionsof theelementswith respect to eachother on theprocessors. In this study we follow the
simple strategy of our initial approach5 which assignsthe elements to processorsin a completely
arbitrary manner.While this strategy can be bettered by employingpartitioning strategies,31,32 the
effecton our algorithm is not dramaticowing to thealreadyhigh degreeof datalocality imposed by
our higher-order,triquadratic finite element basis.6

3. RESULTS

Figure 1 shows theproblemgeometry andfinite elementmeshemployed in our computations,which
consists of 16,000 triquadratic elements with a total of 472,483unknowns.Typically we solve
problems with about 105–106 unknowns, so this problem size is representative of our work. The
cavity lengthis threetimestheheightandwidth. Thisparticular cavity shapehasbeenstudiedbefore,
both experimentally22–24 and theoretically,18–21 so it makesa logical choice. For all the timing
calculationsreportedhere, we employed 300 GMRES iterationswithin eachNewton iteration and
havetakena total of 25 Newton iterations.

3.1. Lid-driven flow

We solved a seriesof steady three-dimensional flow problemsusing zeroth-order continuation;
namely, we usedthesolution at a lower value of Reynoldsnumber asan initial guessto thesolution
at a highervalue(ReynoldsnumberRe � VL=n, where V is the velocity of the lid, L is the width of

Figure1. Domainandmeshfor 3D lid-driven cavity. Arrows showdirectionof lid motion.Schematicdiagramshowsprimary
flow stateat symmetryplaneanddefinition of separationlengthfor secondaryeddyin downstreamcorner
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the box andn is the kinematic velocity of the fluid). By doingso,we were ableto obtain converged
solutionsat Reup to 500.Attemptsto obtainconvergedsolutionsat substantially higher valuesof Re
failed, however. We alsocomputedsteadystatesof the two-dimensional lid-driven cavity over the
same rangeof Re.

Figure 2 showsvelocity vector plots of the three-dimensional flow on the symmetry planeat the
centre of thecavity span(seeFigure 1) at several valuesof Re(theRe� 700caseis not a converged
solution, somethingwe commenton shortly).Figure3 showsvelocity vectorplots at variousplanes
along thecavity span(z� 0 correspondsto thesymmetry planeandz� 1�5 correspondsto thecavity
end).For comparison,Figure 4 showsvelocity vectorplots of the flow in a two-dimensionalcavity.
Theflow consistsof aprimary vortex in theform of acylindrical roll thatspansthecavity from endto
end. There also are secondaryrolls causedby separation in the lower corners. Thus a two-
dimensional cross-section of the flow in a three-dimensional cavity is similar to appearanceto the
flow in a two-dimensionalcavity. Figure 3 shows that there is somedeparture from purely two-
dimensional flow at the cavity ends,however.

Figure 5 shows a comparisonof theseparationlengthof thedownstreamsecondaryeddy(defined
in Figure 1) predicted by two-dimensionaland three-dimensional simulations.Also shown in the
figureareestimatesmade by Aidun et al.22 from their experiments.In eachcasea differentmethodis
usedto estimate the locationof separation. Aidun et al. made a visual estimate asdescribed in their

Figure2. Velocity vectorplots on symmetryplaneof 3D cavity (seeFigure1) at severalvaluesof Re
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paper. In the caseof the simulationswe usethe criterion that the vorticity passesthroughzeroat a
separation point. In the two-dimensionalcasewe computethe vorticity using a highly accurate
smoothing technique,thenusea numericalmethodto accurately locatezero of the vorticity at the
boundary (for detailsof this procedure,seeReferences 16 and17). In the three-dimensional casewe
measurethe separation point at the symmetry planeusing imageplots of an unsmoothed vorticity
field, a lessaccurateprocedure. Thereis goodagreementbetween our three-dimensionalsimulations
andtheexperimental data,given experimentaluncertainty andtheapproximatenatureof ourestimate
of the separation point. There is a systematic deviation between the two-dimensionaland three-
dimensional simulations, but this is to be expected given the presenceof end effects in the three-
dimensional flow, somethingwe discussat lengthbelow.

At high enoughRe a tertiary eddy appears in the corner.Figure 6 shows a comparisonof the
separation length of this eddy predicted by two-dimensionaland three-dimensional simulations.
There is a large difference between the two-dimensional and three-dimensional results. The
explanationfor the different is unclear, but it seemstoo large to attribute to approximation error.
Again we presumethat endeffectsaresomehowresponsible.

The comparisonof two-dimensionalwith three-dimensional flow statesis interesting, becauseat
the limit of Stokes flow and infinite cavity span the flow on the symmetry plane of the three-
dimensional cavity is identical with the flow in a two-dimensional cavity. Such is not the caseif

Figure3. Velocity vectorplots at variousplanesalongcavity span(z � 0 corresponds to symmetryplaneandz � 1�5
corresponds to cavity end)at Re � 400
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Figure4. Velocity vectorplots in 2D cavity at severalvaluesof Re

Figure5. Separationlengthof downstreamsecondaryeddy(definedin Figure1) versusReynoldsnumber.Predictionsof 2D
and3D simulationscomparedwith experimental resultsof Aidun et al.22
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eitherthecavity spanis finite or Re > 0. In theformercase, endeffectsaltertheflow at thesymmetry
plane, whereas in the latter, non-linear effects allow the possibility of other stateswhich do not
correspondto the two-dimensionalflow.

To understandwhy the solution at the symmetry plane of the three-dimensional cavity is not
necessarily a solution to the two-dimensional cavity problem, we look at equations (1) and (2).
Symmetry implies that the spanwise componentof velocity and the spanwise derivatives of all
quantities arezero(i.e. vz � 0; @=@z��� � 0�. Dropping@vz=@z from equation (2) shows that the three-
dimensional solutionat thesymmetry planesatisfiesthetwo-dimensionalcontinuity equation. Thez-
component of equation (1) reducesto @

2
vz=@z

2
� 0, which is decoupled from the x- and y-

components.The answer must therefore lie with the x- andy-components of equation (1). Because
vz � 0, the inertial terms are the samein either case.However, the viscous terms include the
quantities @2

vx=@z2
� 0 and@2

vy=@z
2
� 0, which neednot be zero. In fact, theexperiments of Aidun

et al.22 showtheexistenceof flow statesin which neitherof thesequantities is zero. Thesequantities
correspondto viscousshearacting on the symmetry plane,which ultimately must be tracedto the
cavity ends.

A comparisonof Figures2 and4 reveals that the flow on the symmetry planeis nearly identical
with the two-dimensionalcavity flow at Re � 100 and 300. However, at Re � 500 there is a
significant departure between the two-dimensional and three-dimensional results. In the two-
dimensional casethecentre of theprimaryvortex moves closer to thecentre of thecavity, consistent
with Burggraf’s9 explanationof the tendencyof this vortex to approachpotential flow. In the three-
dimensional case,however, the vortex centreremains at nearly the same location over the range
Re � 300–500.The vortex becomessomewhat lesscircular near its centreas Re is increased, the
oppositeof its tendencyin the two-dimensionalcase. Presumably thedifferenceis a consequence of
endeffects.

At first thoughtwe might surmisethat the importanceof endeffects shoulddiminish at higherRe
becauseof thepresumption thatendeffectsareconfinedto aboundarylayer.However, it appearsthat
the influence of the cavity endsis convected towards the symmetry plane to some extent by the
transverseflow andthat this effect becomesmoreimportantat higher Re. This view is supported by
theobservation that thevortexcentre is higher up andfurtherdownstreamnearthecavity endsthat it
is at thesymmetryplane,asshownin Figure3. Thusthetendencyof thevortexcentreto movecloser
to the centreof the symmetry plane at higher Re is counteractedby the convected influenceof the
endsto pushthe vortex centrehigherup andfurther downstream.

Figure6. Separationlengthof downstreamtertiary eddyversusReynoldsnumber.Predictionsof 2D and3D simulations
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Aidun et al. find that the flow state shown in Figures2 and 3 is stableat low valuesof Re and
persistsat Reup to about825.Theyalsoshowthatcompeting stateswhich haveTaylor–Görtler-like
vorticescoexistat Re < 825, but the actualstate that is observeddepends on the start-up history of
the experiment. In all our calculations we haveobtained convergedsolutions only in the caseof
cavity-spanning cylindrical rolls. We suspect that the difficulty in obtaining a convergedsolution at
Remuchabove500is at leastpartly a resultof thepresentof bifurcationsat nearbyvaluesof Re(we
ruleout thepossibility thatthemesh is under-refinedat thesemodestvaluesof Re, basedonextensive
studies in the two-dimensionalcavity at high Reynoldsnumber). In theRe � 700 caseof Figure 2 it
appears that the solution is undergoing a dramatic rearrangementto another flow state, but as
mentionedearlier,this solutionis not convergedto our satisfaction, sowe canonly speculate.In the
future we hope to investigate this issuefurther by integrating the time-dependentNavier–Stokes
equations.

3.2. Codeperformance

A schematic diagramdetailing therelativecostsof differentcommunicationsschemeson theT3D
is shownin Figure7. Threeapproachesareconsidered.PVM (Parallel Vi rtual Machine) is a cross-
platform softwarepackagethatenablesmessagepassingacrossheterogeneousnetworks (but alsocan
be implementedon single multiprocessormachines). MPI (MessagePassingInterface)is a platform-
independent standard for communications acrossdistributed memory systems(including hetero-
geneous networks and multiprocessor machines). SHMEM (SHared MEMory library) is a
communications library specific to Cray multiprocessormachines.

Something to consider in evaluating differentmessage-passing schemesis theextent to which the
scheme is optimized to take advantageof machine architecture and underlying native languages.
PVM, for instance, is a softwareimplementationof messagepassingthatrestrictstheextent to which
communicationscanbeoptimized to takeadvantageof a specific machine.MPI, on theother hand,is
a communications standard that leaves implementation details to the machine vendor, thereby
enabling better optimization than PVM. Likewise, SHMEM is a vendor-specific implementation,
again allowing for betteroptimization thanPVM.

In the light of theseobservations it is not surprising thatSHMEM outperforms theother methods.
Somewhat surprising is that PVM performs slightly better than MPI, the opposite of what we
expected.Our testswereconductedwith anunsupported implementationof MPI, however,which we
surmise was not well optimized on the T3D. Despitethese differences,all threemessage-passing
schemesperformadequately. Eventhough MPI is not thefastest schemein our tests,it seems a good
choicebecauseit is portableandits implementation is moreflexible thanPVM, with greaterpotential
efficiency.

A comparisonof thealgorithmic times for thecodeimplementedon thetwo machinesis shown in
TableII. The comparisonis madebetweentheCM-5 usingthedata-parallel modeandtheT3D using
SHMEM, the fastestschemetestedon that machine. Calculating the element-level Jacobian matrix

Figure7. Comparisonof solutiontimesusingvariousmessage-passingschemeson T3D (256processors,25 Newtoniterations,
300 GMRESiterationsper Newtoniteration)
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and vector of residuals takes nearly the sameamount of time on both machines. Matrix–vector
multiplicationsin GMREStakeslightly longeron theCM-5, but thedifferenceof 20%is modest.By
far the biggest difference is in the gather=scater calls, which account for the bulk of the
communications cost.Here the CM-5 outperforms the T3D by a factor of two in our tests,but we
emphasizethat no effort wasmadeto optimize buffer preparation andreferencing (included in the
gather=scattertimings); optimization potentially could reduce this performance gap.

The numbersin Table II do not tell the whole story, since the programming methodsbeing
comparedare quite different. Messagepassingon the T3D using SHMEM, while not portable, is
more nearly so thandata-parallel programmingon the CM-5. A well-optimized MPI library might
perform nearly as well as SHMEM, and althoughperhaps slower than a data-parallel codeon the
CM-5, would be completely portable.

Besidesportability andefficiency, we areconcernedwith how themethodsscalewith thenumber
of processors.Sucha comparisonis shown in Figure 8. Codeperformance scalesreasonably well on
bothmachines.Doubling thenumber of processorsfrom 256to 512gives a reductionof 40%in total
time on the CM-5 and35% on the T3D, comparedwith a theoretical maximum reductionof 50%.
Theslightly betterscaling on theCM-5 is mostly dueto betterscaling of communicationscost, which
again is boughtat the expense of portability.

Table II. Comparisonof T3D andCM-5 implementations(256 processors,25
Newtoniterations,300 GMRESiterationsper Newtoniteration)� All times in

seconds

Programmetask T3D CM-5

Calculationof Jacobianmatrix andvectorof residuals 172 180

Solutionof linear equationsetvia GMRES
Matrix–vectormultiplications 159 205
Gather=scattercommunications 1032 505

Total time 1985 1132

Figure8. Scalingof solutiontimeswith numberof processorson CM-5 andT3D (25Newtoniterations,300GMRESiterations
per Newtoniteration)
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4. CONCLUDING REMARKS

We did not find a dramatic differencein speedbetween the CM-5 andT3D in our comparison.The
CM-5 wasnearly twice asfastoverall, but mostof thedifferencewasin communicationscost, bought
at the expense of portability. By far a more important issue is the rate of convergence of
preconditioned GMRES.Using diagonalpreconditioning, GMRES convergesslowly, or not at all,
when solving incompressibleflows,especially interior flows with much structure.Slow convergence
clouds the issuessurrounding operation count discussed earlier. As mentioned in Section2.3, the
operation count for iterative solution of equation(9) scales as N3. The total operation count also
scalesasthetotal numberof GMRESiterations,however. Should a greatmany GMRESiterationsbe
required to obtainconvergence, the methodbecomesunattractive.

Explicit useof thecontinuity equation is partof theproblem. Continuity residuals give azeroentry
on the diagonalof the Jacobian, which makesstrict diagonalpreconditioning indefinite. To fix this
problem,we usea smallnumber in place of zerofor theseentriesin thediagonalpreconditioner.The
rate of convergenceis quite sensitiveto the value of this ad hoc parameter, however.5 Use of
stabilized methodssuch as PSPGand Galerkin least squares obviates the needto use an ad hoc
parameter.27 Our preliminary tests show that thesemethodsconvergefaster than the conventional
Galerkin methodusingdiagonal preconditioning when appliedto interior incompressibleflows such
asthe lid-driven cavity.

It is clear that the current generation of massively parallel supercomputers makes three-
dimensional flow calculationsfeasible.Thereport by Tezduyar etal.27 of solvingseveral complicated
three-dimensional flows holdsout great promise that suchcalculations will becomeroutinewithin a
few years.Much work remainsto be done in the areaof preconditioning, however, particularly
preconditionersfor incompressible flows which canbe parallelized efficiently.
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